Gill Development and Its Functional and Evolutionary Implications in the Blue Mussel Mytilus edulis (Bivalvia: Mytilidae)

Publication Type:Journal Article
Year of Publication:2009
Authors:R. Cannuel, Beninger, P. G., McCombie, H., Boudry, P.
Journal:Biological Bulletin
Volume:217
Pagination:173-188
Date Published:10
Abstract:

Study of gill development in bivalve larvae and postlarvae provides information on the evolution of this organ and feeding mechanisms of early stages. Scanning electron microscopy was used to document the development of the filibranch homorhabdic gill in hatchery-reared larval, postlarval, and juvenile Mytilus edulis. Four key stages were identified during gill development: (1) transfer of the particle collection function from velum to gill at metamorphosis, with subsequent elongation of the gill filaments to form a gill basket, with complete frontal ciliation; (2) reflection of the inner demibranchs, and transition to a V-shaped gill; (3) delayed development of the outer demibranchs, occuring simultaneously along the gill axis, with transition to the adult final W-shape; and (4) formation of the ventral particle grooves and concomitant acquisition of dense abfrontal ciliation. These key stages signal shifts in the mechanisms of particle processing during the early development of M. edulis. Gill development in the homorhabdic filibranch M. edulis was similar to that of the early homorhabdic stages of the heterorhabdic filibranchs studied to date (Pectinidae), but different from that of the pseudolamellibranchs (Ostreidae), suggesting divergent evolution of this character. Similarly, the systems responsible for gill cohesion and structural integrity are common to both the homorhabdic and heterorhabdic filibranchs, suggesting evolutionary proximity, but they are patently different from those of the eulamellibranchs and pseudolamellibranchs, suggesting evolutionary divergence.

URL:http://www.biolbull.org/cgi/content/abstract/217/2/173
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith